
C a s e S t u d y :

Fortune 500 FSI

Case Study: Fortune 500 FSI

Contents

Multiplying the Value of AI Agents and Driving Developer Productivity Gains 3

Setting the Stage 3

The Challenge 3

The Goals 4

Step 1: Establish a Runtime 4

Step 2: Build a Secure and Isolated Connection 4

Step 3: Curate a Registry of Trusted MCP Servers 5

Step 4: Pilot the Self-Service Model 6

Step 5: Scale MCP in Production 6

Step 6: Exploring New Solutions 7

A Collaborative Approach 7

Business Impact 8

www.stacklok.com enterprise@stacklok.com 2

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

Multiplying the Value of AI Agents

and Driving Developer Productivity Gains
In a span of just three months, a Fortune 500 Financial Services firm multiplied the value of their AI agents.
The key to their transformation was connecting AI agents to data and systems behind their corporate
firewall. This was no small feat in a regulated industry and at a company that placed a heavy emphasis on
security, but a small, focused team overcame obstacles to optimize agent context with a platform grounded
in the Model Context Protocol (MCP).

Now, the company has deployed more than 100 MCP servers into production with centralized governance
and more than 500 employees access servers at least once per week. AI agent completion rates have
increased, and using MCP servers, developers are shipping code faster and with lower error rates. In a short
window of time, the team drove a massive impact on company-wide productivity.

Setting the Stage

In the fall of 2024, the company’s software development team licensed Cursor and Claude Code,
respectively, for developer use. The plan was to make these assistants available to all software developers as
a way to increase their productivity and ship more code, faster. However, six months after making these
assistants internally available, software developers were frustrated. Cursor and Claude Code completion
rates were poor, usage of these assistants was declining and there was no measured bump in developer
productivity. An internal team was assembled to assess and remedy the situation.

The Challenge

The core issue was readily apparent. Both Cursor and Claude Code had been trained on publicly available
information, but not on the company’s data and systems. In essence, the company had AI coding assistants
that were built for any enterprise, but what they needed were assistants that understood and could act on
their systems.

The team tasked with solving this issue considered building custom integrations, but realized this was not
sustainable or scalable, and so they explored how the Model Context Protocol (MCP) could help them
connect AI coding assistants to the context behind their corporate firewall. They quickly identified this as
the right path for their enterprise, but as a highly regulated operation, they also recognized they would need
to build security guardrails and centralized controls that were absent in the MCP spec.

www.stacklok.com enterprise@stacklok.com 3

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

The Goals

The team at this Fortune 500 FSI envisioned an MCP solution that would first allow developers — and
eventually all knowledge workers — to securely connect to a catalog of trusted MCP servers. The intent was
to keep the user experience as automated as possible to facilitate adoption. And to address internal
compliance requirements, the team wanted to make it simple for employees to run MCP servers in
containers that were hosted in their private cloud.

Finally, the project team knew they needed a solution that could operate at scale. Already, the organization
had 6,000+ GitHub repositories and 10,000+ daily commits, plus a JFrog Artifactory with 40 million artifacts
and a Google Big Query table with 160 petabytes of data. And so they set out on a multi-step journey to
deliver optimal context to their AI coding assistants and radically transform developer productivity.

Step 1: Establish a Runtime

The first step for any MCP solution is to establish a runtime. In this case, the runtime had to operate
in their air-gapped private cloud. The project team wanted a React-based web framework to
automate repository creation, image scanning, deployment processes and more.

Stacklok's Enterprise MCP Platform had immediate appeal; the solution allowed the company to
ensure consistency and control across workflows. Stacklok made it easy for them to containerize
every MCP server and then deploy, run and manage those servers in a Kubernetes cluster. Stacklok
also offered the bells & whistles ... And so, the project team could turn their attention to step 2, diving
headlong into security considerations.

Step 2: Build a Secure and Isolated Connection

In addition to the project team, the company’s security team was involved from the outset of the
project. They outlined requirements and access restrictions for an MCP gateway.

The project team started by solving authentication, implementing a flow that used OAuth 2.0
(consistent with the MCP spec) and Proof Key Code Exchange (PKCE). On this foundation, the team
added more advanced features, including request routing, authorization and session management.
The team further secured their environment with federated token exchange and network isolation of
MCP servers; both of these capabilities were only available via Stacklok, consistent with the
solution’s focus on enterprise requirements.

www.stacklok.com enterprise@stacklok.com 4

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

In addition to technology, they introduced specific risk mitigation practices:

Use only internally approved base images and packages

Enforce token expiry

Prevent hard coded secrets

Apply least privilege principles

Review configurations and permissions on a defined cadence

And finally, to address security team requirements (and ensure tight iteration loops on their MCP
solution) the team invested time to build proper monitoring. Today, they track and report on: MCP
gateway reliability, MCP server usage and performance, infrastructure health and accepted vs.
rejected codebase additions. Stacklok allowed the project team to integrate monitoring into their
existing observability solution (New Relic), enforce data retention policies and maintain audit logs.

Step 3: Curate a Registry of Trusted MCP Servers

With a runtime and gateway in place, the team was ready to curate a registry of trusted MCP servers.
A tightly scoped set of MCP servers that represented business critical data and systems were
hosted in their private cloud via Stacklok. A wider set of MCP servers were available for use by non-
technical roles.

Every MCP server must be validated by a central team before being included in the registry.
Employees are blocked from using unapproved MCP servers and the team’s centralized controls
include network policies and permissions that restrict access to MCP servers. Each MCP server is
preconfigured for employees, so they can be readily discovered and then installed with a single click.

The result of steps 2 and 3 is represented in the diagram below, which shows gateway components
and a simple representation of how MCP servers are hosted and user requests are accepted or
blocked.

Gateway Proxy

Request

Controller

Auth

Handler

Session

Management

Request

Router

Corporate Proxy Observability

Allowed Allowed Blocked

Local MCP Servers
Locally hosted servers for
tech users

Remote

MCP Servers

BigQuery

www.stacklok.com enterprise@stacklok.com 5

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

Step 4: Pilot the Self-Service Model

The project team now had a working solution, and it was time to pilot with a group of technical users.
Those users were able to discover and deploy MCP servers, while the underlying solution handled all
authentication, token exchanges and metadata such that the user experience was seamless. The
below figure shows the workflow:

Developer (Claude/Cursor) MCP Runtime MCP Gateway

Install Connector + Enable
Gateway endpoint at MCP setting Request for Auth URL

Connector Open Gateway URL and Gateway Redirect to Provider

Gateway Exchange Code for Token with Provider

Browser Login

Gets OAuth Authorization code

Gateway Returns Token to Client

Client stores token in  
~/.mcp-tokens.json for X hrs

Gateway Redirects Browser to Clien t

(with authorization code in URL)

Client Exchanges Code with Gatewa y

(includes code_verifier for PKCE)

Return Auth URL

The team measured the impact, and it was immediate. Code completion acceptance for both Claude
Code and Cursor increased markedly, and developer usage rates of these assistants also climbed.
There were early indications that developers using the MCP solution were producing more code with
lower error rates.

Step 5: Scale MCP in Production

With compelling pilot results and effective solutions for all security and compliance requirements,
the company was ready to roll out their MCP solution. In just three months, the team went from
significant challenges with coding assistant usage and ROI, to an architecture for an MCP solution,
to a pilot, to full production deployment. At the end of this window, the company had more than 500
employees accessing MCP servers at least weekly, with more than 100 MCP servers in their registry.

www.stacklok.com enterprise@stacklok.com 6

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

Step 6: Exploring New Solutions

While the MCP spec defines a one-to-one relationship between a client and server, there are
situations where multiple tools from multiple serversv are needed to complete a task. As this Fortune
500 FSI is an early adopter of MCP in production, they have also been early to recognize the
opportunity to group tools from servers via a ‘virtual’ MCP server.

The company wants a developer to be able to start a virtual MCP server that consolidates multiple
tools into a single endpoint. The developer won’t need to manage multiple connections or worry
about custom configurations; the virtual MCP server enables granular tool selection instead of
exposing entire catalogs. And a virtual MCP can bolster security by ensuring API keys aren’t injected
into LLM context by substituting parameters for environment variables.

Fortunately, the Stacklok team has been building similar capabilities, and formal co-development has
kicked off on the virtual MCP server. The teams are keeping it simple with easy extensions, templates
for different environments and consistent naming schemas.

A Collaborative Approach
The project team first found ToolHive as an open source project and engaged with Stacklok engineers via
Discord. As the project team pushed the boundaries of ToolHive, they surfaced ideas for new capabilities; as
the Stacklok team delivered innovation and support, trust was established.

ToolHive underpins critical portions of the company’s MCP solution. ToolHive provides the runtime; whereas
other MCP solutions operate via a SaaS model, ToolHive allows the company to operate their MCP solution
from an air-gapped private cloud. The company uses ToolHive’s Kubernetes Operator to orchestrate their
footprint and manage MCP at scale and uses ToolHive’s federated token exchange as an essential security
measure.

The company’s gateway also leans on Stacklok, with integrations into the company’s existing IDP,
observability tool and more. And It’s Stacklok that is helping them realize their vision for a virtual MCP (step
6 above), by offering a single endpoint from which their employees can securely and efficiently access tools.
The project team has recently enabled Stacklok’s MCP Optimizer functionality to filter out useless tool
metadata, reducing their token use by more than 50% and improving model performance.

And finally, Stacklok's Enterprise MCP Platform is the backbone of the company’s MCP server registry.
Stacklok is fully integrated with the official upstream MCP registry, so they can draw from those servers, as

well as quickly and simply add their own trusted servers.

Most importantly, the company’s project team and the Stacklok team have built a strong, collaborative
relationship. There is an open exchange of ideas as the two parties push the open source project forward,
and drive more value from the company’s MCP solution and broader AI investments.

www.stacklok.com enterprise@stacklok.com 7

mailto:enterprise@stacklok.com

Case Study: Fortune 500 FSI

Business Impact

In summary, Stacklok was able to partner closely with this Fortune 500 FSI to put MCP into
production. As a result, the company is turning their internal data into knowledge, and that
knowledge into action. More than 500 employees use one or more MCP servers at least
weekly. AI agent usage has increased and completion rate and acceptance rate have climbed
considerably. In just three months, the company led an internal transformation that has them
shipping more code, faster and with lower error rates.

www.stacklok.com enterprise@stacklok.com 8

mailto:enterprise@stacklok.com

